If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+100t+85
We move all terms to the left:
0-(-16t^2+100t+85)=0
We add all the numbers together, and all the variables
-(-16t^2+100t+85)=0
We get rid of parentheses
16t^2-100t-85=0
a = 16; b = -100; c = -85;
Δ = b2-4ac
Δ = -1002-4·16·(-85)
Δ = 15440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15440}=\sqrt{16*965}=\sqrt{16}*\sqrt{965}=4\sqrt{965}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-4\sqrt{965}}{2*16}=\frac{100-4\sqrt{965}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+4\sqrt{965}}{2*16}=\frac{100+4\sqrt{965}}{32} $
| 12.9=y-4.2 | | 3y+6=7y+5 | | 1x+0.05x1.05x10)6(x+2)= | | n×-5/8=-0.4 | | (2x+15)=25+x | | 180-(2x+15)=x | | -3(p+3)-p-6=-4(p+5)+5 | | 9y²-4ײ-54×-16y+29=0 | | 9x-(4x+3)+13=3x | | Y=163±√144x2+1944x+25525/18 | | -.2x^2+64x-1200=0 | | −2x+10=−36 | | H(x)=-1/2x+9 | | 4.50n+535=12n | | 9k-12=2k+65 | | 13n+10=114 | | 4+4f=–20 | | -4x^2+40x-20=0 | | 10a-6=249 | | .7.8=3.5+a* | | 8t³-t+9=0 | | 5x-1/3=x+1 | | 0.9x-0.5(5-x)=5.2 | | 4x−6/7=−7x+37 | | -2(3w-4)=2(w+24) | | 9x-(6x-3)=30 | | 6(u+8)=66 | | 22+4h=74 | | 3(2x+6)=2(x-1) | | 3x+8/7=−3x+12/3 | | s+33/9=8 | | x=(-11)=13 |